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We analyze the properties and stability of two-color discrete localized modes in arrays of channel
waveguides where tunable quadratic nonlinearity is introduced as a nonlinear defect by periodic poling of a
single waveguide in the array. We show that, depending on the value of the phase mismatch and the input
power, such two-color defect modes can be realized in three different localized states. We also study resonant
light scattering in the arrays with the defect waveguide.

DOI: 10.1103/PhysRevE.72.036622 PACS number�s�: 42.81.Qb, 05.45.�a, 42.65.�k

I. INTRODUCTION

The study of nonlinear propagation of light in periodic
photonic structures recently attracted strong interest due to
the unique possibility of observing experimentally an inter-
play between the effects of nonlinearity and periodicity, in-
cluding the generation of spatial optical solitons �1�. Re-
cently fabricated nonlinear periodic structures such as arrays
of weakly coupled nonlinear optical waveguides can support
distinctive types of self-trapped optical modes �2–5�. More-
over, linear properties such as diffraction may differ dramati-
cally compared to those in the corresponding continuous sys-
tems.

In addition to cubic nonlinear periodic systems, during
last years a growing interest is observed in the study of non-
linear optics associated with the so-called “quadratic nonlin-
earities” which may produce the effects resembling those
known to occur in cubic nonlinear materials. Typical ex-
amples are all-optical switching phenomena in interferomet-
ric or coupler configurations as well as the formation of spa-
tial and temporal solitons in planar waveguides �6�. One of
the recent highlights in this field is the first experimental
demonstration of discrete solitons with two frequency com-
ponents mutually locked by a quadratic nonlinearity �7�.
These optical experiments have been performed in arrays of
weakly coupled channel waveguides with tunable cascaded
quadratic nonlinearity, and they demonstrated a good agree-
ment with the theoretical analysis �8�. As a matter of fact, it
was demonstrated that arrays of coupled channel waveguides
fabricated in a periodically poled Lithium Niobate slab rep-
resent a convenient system to verify experimentally many
theoretical predictions. These experimental observations
open novel perspectives for employing larger nonlinearities
in the periodic systems with quadratic materials.

In this paper, we analyze the properties and stability of
two-color discrete localized modes in arrays of channel
waveguides. In particular, we show that when periodic pol-
ing is applied to just a single waveguide in the array, it cre-
ates a nonlinear defect �9–11� that may support strongly lo-
calized discrete modes similar to discrete solitons and also

display specific resonant scattering properties.
The paper is organized as follows. In Sec. II we introduce

our model and find the profiles of two-color discrete local-
ized modes. We show that such modes can exist in three
different states, and they can be observed in the same array
depending on the array parameters and the value of the input
power. Section III is devoted to the study of the resonant
light transmission through the defect waveguide that can be
associated with the Fano resonance. Finally, Sec. IV con-
cludes the paper.

II. TWO-COLOR LOCALIZED MODES

Being motivated by the design of the periodic photonic
structures recently employed for experiments �7�, we con-
sider an array of weakly coupled linear waveguides where
one waveguide has periodic poling, and therefore it pos-
sesses a quadratic nonlinear response. When the matching
conditions are satisfied, the fundamental-frequency �FF�
mode with the frequency � generates the second-harmonic
�SH� wave at the frequency 2�, so that such a structure with
the poled waveguide may behave as a nonlinear defect with
localized quadratic nonlinearity.

In the tight-binding approximation �5�, the effective equa-
tions for the complex envelopes of the FF wave �un� and its
SH component �vn� coupled at the defect waveguide �at n
=0� can be written in the form

i
dun

dz
+ cu�un+1 + un−1� + 2u0

*v0�n0 = 0,

i
dvn

dz
+ cv�vn+1 + vn−1� − �vn + u0

2�n0 = 0, �1�

where cu and cv are the coupling coefficients, � is the phase
mismatch parameter, and �n0 is a delta function.

The discrete model �1� has two conserved quantities, the
total power
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P = �
n=−�

�

��un�2 + 2�vn�2� �2�

and the Hamiltonian. We look for stationary solutions of the
coupled equations in the form

un�z� = unei�z, vn�z� = vne2i�z,

where we assume, without loss of generality, that the ampli-
tudes un and vn are real. As a result, Eqs. �1� become

�un = cu�un+1 + un−1� + 2u0v0�n0,

2�vn = cv�vn+1 + vn−1� − �vn + u0
2�n0. �3�

We look for spatially localized discrete states in the form
un=u0��n� and vn=v0��n�, where ��� , ���	1, and obtain from
Eqs. �3� at n�0 two relations, �=cu��+�−1� and 2�=cv��
+�−1�−�, which can be combined to yield

cv�� +
1

�
� − 2cu�� +

1

�
� = � . �4�

On the other hand, for the defect waveguide at n=0 we ob-
tain �=2cu�+2v0 and 2�v0=2cvv0�−�v0+u0

2. After some
simple algebra, we solve for the parameters u0 and v0 in
terms of � and � and obtain

v0 =
cu

2
� 1

�
− ��, u0

2 = cvv0�1

�
− �� . �5�

In addition, Eq. �2� can be expressed as

P = u0
2�1 + �2

1 − �2� + 2v0
2�1 + �2

1 − �2� , �6�

and the next step is to replace the amplitudes u0 and v0 in Eq.
�6� and obtain the second equation

cucv
�1 − �2�

2��
�1 + �2� + cu

2 �1 − �2�2

2�2

�1 + �2�
�1 − �2�

= P . �7�

Equations �4� and �7� constitute a system of two coupled
nonlinear equations for the functions � and �. Moreover, Eq.
�4� depends on the mismatch parameter �, whereas Eq. �7�
depends on the total power P.

First, we assume that cu ,cv
0. From Eq. �5� we find that
if v0
0 then 0	� ,�	1. On the other hand, if v0	0, then
−1	� ,�	0. Also, without loss of generality, we can con-
sider only u0
0. Thus, we should find real solutions for the
values � and � in the domain defined by the conditions 0
	� ,�	1 and −1	� ,�	0 on the plane �� ,��.

From the structure of Eqs. �4� and �7� we notice that a
change �→−� is equivalent to the change �� ,��→ �−� ,
−��. Thus, we only need to consider positive values of �. In
order to find spatially localized states, we should analyze the
functions of � and � defined by the left-hand sides of the
expressions �4� and �7�, for varying values of the mismatch
parameter � and the total power P. This analysis reveals that,
in general, for a given value of �, a minimum value of the
power is required to support a localized state at the defect.

As an example, in Figs. 1�a�–1�d� we show several pro-
files of the localized modes for the case �=0 and two values

of the power P, for the typical values cu=1 and cv=0.5.
Below a certain threshold power, there exist no localized
states, but above the threshold two localized modes appear,
unstaggered �a� and staggered �b� modes, respectively �see
Figs. 1�a� and 1�b��. As the total power P increases, these
two modes become more localized, as shown in Figs. 1�c�
and 1�d�.

For a finite positive mismatch � and increasing power P,
we find that there is a threshold power below which no lo-
calized states exist. When the power exceeds the first thresh-
old, at least one �staggered� localized modes becomes pos-
sible and then the other mode appears for larger powers. As
the value of the mismatch � increases further, it can be
proven that the contour curve associated with Eq. �4�, which
depends on �, experiences a curvature change at �=2�2cu

−cv�=3 and, as a result, a double root is possible at a certain
power level. Further power increase gives rise to two stag-
gered localized states. Even further increase in the power
makes possible another �unstaggered� localized state to exist,
as shown in Fig. 2 at �=5.

The threshold value of the total power that corresponds to
the appearance of the first localized mode can be found ana-
lytically in the form

Pmin
1 ��� = cu��� + 4cu�2 − 4cv

2�1/2, �8�

for the condition �
2�cv−2cu�, and

Pmin
2 ��� = cu��� − cu�2 − 4cv

2�1/2, �9�

for the condition �	2�2cu−cv�. In the first case, the lowest
localized mode is unstaggered, whereas in the second case, it
is staggered. Applying these results to Fig. 1, we obtain
Pmin

1 �0�= Pmin
2 �0�=	15=3.873. By solving Eq. �1� numeri-

cally, we have checked the stability of all localized modes to
propagation, and we came to the conclusion that such modes

FIG. 1. Examples of localized modes at �=0 and two values of
the total power above the threshold: �a�, �b� P=5 and �c�, �d� P
=10. Solid and dashed curves show the fundamental-frequency �un�
and second-harmonic �vn� fields, respectively.
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are stable, and they do not display any bistability.

III. RESONANT TRANSMISSION

The two-color localized modes described above can be
excited and generated experimentally in arrays of weakly
coupled quadratic waveguides being detected through the
specific features of the transmission coefficient �12�. There-
fore, here we analyze the scattering of a plane FF wave by a
quadratic defect waveguide. When the phase-matching con-
ditions are satisfied, after the interaction with the quadratic
waveguide, the FF wave generates a SH wave which could
either propagate or get trapped being guided by the defect
waveguide in the form of a localized mode.

Propagating SH field. To calculate the transmission coef-
ficient in the case of the propagating SH field, we present the
fields as

un�z� = ei�uz
aeikn + b1e−ikn, n 	 0,

c1eikn, n � 0,
� �10�

vn�z� = ei�vz
b2e−iqn, n 	 0,

c2eiqn, n � 0,
� �11�

where a is the amplitude of the FF wave before the scatter-
ing, b1,2 and c1,2 are the amplitudes of the reflected and trans-
mitted FF and SH waves, respectively, and the wave num-
bers k and q are defined in the domain 0	k ,q	�. Using
these expressions far from the defect site n=0, from the
phase-matching condition �v=2�u we obtain

cv cos q −
�

2
= 2cu cos k . �12�

Equation �12� defines q=q�k� which is real and positive in
some interval, kmin	k	kmax, where

kmin,max = cos−1�� ± 2cv

4cu
� .

Outside this interval, q is purely imaginary, and this case
corresponds to the SH field localized at the waveguide.

Evaluating the fields at the sites n=−1,0, we obtain

�uc1 = cu�c1eik + ae−ik + b1eik� + 2c1
*c2,

�vc2 = cv�c2eiq + b2eiq� − c2� + c1
2, �13�

c1 = a + b1, b2 = c2, �14�

the latter condition implies that the SH fields are generated
symmetrically. Using these results, we find the important re-
lation c2= �i /2cv sin q�c1

2 that allows us to obtain the nonlin-
ear equation for the transmission coefficient of the FF wave,
defined as t�k�= �c1�2 / �a�2,

t�k� =
1

�1 + B�k�t�k��2 , �15�

where B�k���a�2A�k�= �a�2 / 
2cucv sin k sin q�k��. By rewrit-
ing Eq. �15� in the form

A2�k�t3 + 2B�k�t2 + t = 1, �16�

and using the fact that A�k�
0, it is easy to see that this
result does not predict bistability. As a matter of fact, the
only real and positive solution of Eq. �15� can be found in an
analytical form from Eq. �16�.

Localized SH field. To calculate the transmission coeffi-
cient in the case of the localized SH field, we present the SH
field as

vn = ei�vz
b2eqn, n 
 0,

c2e−qn, n � 0,
� �17�

which can be obtained by replacing q→ iq in Eqs. �11�. Real
and positive values of q can be found from Eq. �12� that now
takes the form

cv cosh q −
�

2
= 2cu cos k . �18�

Wave number k of the incident FF field should be taken
outside of the domain �kmin,kmax�, i.e., for 0	k	kmin and
kmax	k	�. The relation between the transmitted ampli-
tudes now becomes c2=c1

2 / �2cv sinh q�, and the transmission
coefficient t�k� is defined by the equation

t�k� =
1

1 + D2�k�t2�k�
, �19�

where D�k���a�2 / �2cvcu sin k sinh q�k��. Equation �19� pos-
sesses a real and positive solution for t�k� that can be found
in an analytic form.

Figures 3�a�–3�d� show some examples of the dependence
of the transmission coefficient t�k� on the wave number
k�0	k	�� for different values of the coupling coefficients
cu ,cv and the mismatch parameter �. In a sharp contrast with
the problem of the cubic defect analyzed earlier in Refs. �13�

FIG. 2. Same as in Fig. 1 but for �=5 and two values of the
total power above the threshold: �a�, �b� P=7 and �c�–�e� P=10. In
this case, two staggered localized modes appear about the threshold
power, and then additional unstaggered mode appears for larger
values of P.
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where the transmission coefficient does not show any inter-
esting structure and possesses a single maximum only, here
the transmission coefficient shows two minima associated
with the resonant suppression of the transmission. For small
values of the ratio cv /cu, the middle interval is narrow and
the transmission remain low. The effect of the nonzero mis-
match parameter �see Fig. 3�d�� is to shift the position of the
middle interval making the transmission curve asymmetric.

The resonant suppression of transmission at some points,
i.e., t�kmin�= t�kmax�=0, corresponds to a novel type of the
well-known Fano resonance �14� as recently discussed in

Ref. �12� for a simpler model. Indeed, destructive interfer-
ence and resonant suppression of transmission is observed
when there exists an extra localized state coupled to the
propagating mode with the energy inside the linear spectrum.
Indeed, the values q�kmin�=0 and q�kmax�=� define the band
edges of the propagation spectrum of the SH field, and such
resonances take place when the SH field is generated.

IV. CONCLUSIONS

Being driven by the recent successful experimental dem-
onstrations of discrete optical solitons with two frequency
components mutually locked by a quadratic nonlinearity, in
this paper we have studied two-color localized modes in ar-
rays of channel waveguides. We have assumed that the tun-
able quadratic nonlinearity is introduced as a nonlinear de-
fect by periodic poling of a single waveguide in the array,
and we have analyzed the structure and stability of discrete
localized modes created by mutual locking of two frequency
components. We have shown that, depending on the value of
the phase mismatch and the input power, such two-color de-
fect modes can be realized in the same array in three differ-
ent localized states, and we have studied also the resonant
light scattering in the array with the defect waveguide draw-
ing analogies with the Fano resonance.
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